师资队伍

讲师 当前位置: 首页 > 师资队伍 > 学院教师 > 讲师 > 正文

李丁

发布时间:2022-04-08  发布者: 点击阅读数:

李丁  博士  讲师

地址:湖北省武汉市东湖新技术开发区光谷一路206号565net必赢官方网4B楼225室

邮编:430205

E-mail:dli@wit.edu.cn 

 

 

教育背景           

2013-2018[加拿大]阿尔伯塔大学,软件工程与智能系统,博士

工作履历           

2022-至今:565net必赢官方网,565net必赢官方网,讲师

2018-2021[加拿大] NTWIST公司,研究科学家(Research Scientist

研究领域           

  1. 人工智能技术及其工业应用

    主要涉及深度学习、基于图的半监督学习、多标签分类、大数据分析等人工智能技术,及其在复杂工业系统的软测量建模、矿石图像识别与分类、故障诊断与报警监控、列车运行时间预测、输油管道建模与运行优化等典型工业问题中的应用研究

  2. 非侵入式用电负荷监测技术

    主要涉及基于有监督多标签组合分类的电器用电模式识别、基于流形学习的半监督多标签分类及用电负荷识别、基于联邦学习的跨用户用电负荷监测等

    代表性论文                            

    [1] D. Li and S. Dick, Residential household non-intrusive load monitoring via graph-based multi-label semi-supervised learning,IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 4615-4627, 2019. (IF: 10.275,引用次数:74)

    [2] D. Li and S. Dick. "Semi-supervised multi-label classification using an extended graph-based manifold regularization." Complex & Intelligent Systems, vol. 8, pp. 1561–1577, 2022. (IF: 6.700)

    [3] D. Li and S. Dick, “Non-intrusive load monitoring using multi-label classification methods,” Electrical Engineering, vol. 103, pp. 607-619, 2021.

    [4] D. Li and S. Dick, “A graph-based semi-supervised learning approach towards household energy disaggregation,” 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, pp. 1-7, Jul. 2017.

    [5] D. Li and S. Dick, “Whole-house non-intrusive appliance load monitoring via multi-label classification,” 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, pp. 2749-2755, Jul. 2016.

    [6] D. Li, K. Sawyer, and S. Dick, “Disaggregating household loads via semi-supervised multi-label classification,” 2015 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS), Redmond, WA, pp. 1-5, Aug. 2015.

 

上一条:陈龙 下一条:叶亮